22 research outputs found

    SafeDiffuser: Safe Planning with Diffusion Probabilistic Models

    Full text link
    Diffusion model-based approaches have shown promise in data-driven planning, but there are no safety guarantees, thus making it hard to be applied for safety-critical applications. To address these challenges, we propose a new method, called SafeDiffuser, to ensure diffusion probabilistic models satisfy specifications by using a class of control barrier functions. The key idea of our approach is to embed the proposed finite-time diffusion invariance into the denoising diffusion procedure, which enables trustworthy diffusion data generation. Moreover, we demonstrate that our finite-time diffusion invariance method through generative models not only maintains generalization performance but also creates robustness in safe data generation. We test our method on a series of safe planning tasks, including maze path generation, legged robot locomotion, and 3D space manipulation, with results showing the advantages of robustness and guarantees over vanilla diffusion models.Comment: 19 pages, website: https://safediffuser.github.io/safediffuser

    Interpreting Neural Policies with Disentangled Tree Representations

    Full text link
    The advancement of robots, particularly those functioning in complex human-centric environments, relies on control solutions that are driven by machine learning. Understanding how learning-based controllers make decisions is crucial since robots are often safety-critical systems. This urges a formal and quantitative understanding of the explanatory factors in the interpretability of robot learning. In this paper, we aim to study interpretability of compact neural policies through the lens of disentangled representation. We leverage decision trees to obtain factors of variation [1] for disentanglement in robot learning; these encapsulate skills, behaviors, or strategies toward solving tasks. To assess how well networks uncover the underlying task dynamics, we introduce interpretability metrics that measure disentanglement of learned neural dynamics from a concentration of decisions, mutual information and modularity perspective. We showcase the effectiveness of the connection between interpretability and disentanglement consistently across extensive experimental analysis

    On the Forward Invariance of Neural ODEs

    Full text link
    To ensure robust and trustworthy decision-making, it is highly desirable to enforce constraints over a neural network's parameters and its inputs automatically by back-propagating output specifications. This way, we can guarantee that the network makes reliable decisions under perturbations. Here, we propose a new method for achieving a class of specification guarantees for neural Ordinary Differentiable Equations (ODEs) by using invariance set propagation. An invariance of a neural ODE is defined as an output specification, such as to satisfy mathematical formulae, physical laws, and system safety. We use control barrier functions to specify the invariance of a neural ODE on the output layer and propagate it back to the input layer. Through the invariance backpropagation, we map output specifications onto constraints on the neural ODE parameters or its input. The satisfaction of the corresponding constraints implies the satisfaction of output specifications. This allows us to achieve output specification guarantees by changing the input or parameters while maximally preserving the model performance. We demonstrate the invariance propagation on a comprehensive series of representation learning tasks, including spiral curve regression, autoregressive modeling of joint physical dynamics, convexity portrait of a function, and safe neural control of collision avoidance for autonomous vehicles.Comment: 20 page

    Towards Generalist Robots: A Promising Paradigm via Generative Simulation

    Full text link
    This document serves as a position paper that outlines the authors' vision for a potential pathway towards generalist robots. The purpose of this document is to share the excitement of the authors with the community and highlight a promising research direction in robotics and AI. The authors believe the proposed paradigm is a feasible path towards accomplishing the long-standing goal of robotics research: deploying robots, or embodied AI agents more broadly, in various non-factory real-world settings to perform diverse tasks. This document presents a specific idea for mining knowledge in the latest large-scale foundation models for robotics research. Instead of directly using or adapting these models to produce low-level policies and actions, it advocates for a fully automated generative pipeline (termed as generative simulation), which uses these models to generate diversified tasks, scenes and training supervisions at scale, thereby scaling up low-level skill learning and ultimately leading to a foundation model for robotics that empowers generalist robots. The authors are actively pursuing this direction, but in the meantime, they recognize that the ambitious goal of building generalist robots with large-scale policy training demands significant resources such as computing power and hardware, and research groups in academia alone may face severe resource constraints in implementing the entire vision. Therefore, the authors believe sharing their thoughts at this early stage could foster discussions, attract interest towards the proposed pathway and related topics from industry groups, and potentially spur significant technical advancements in the field

    RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

    Full text link
    We present RoboGen, a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation. RoboGen leverages the latest advancements in foundation and generative models. Instead of directly using or adapting these models to produce policies or low-level actions, we advocate for a generative scheme, which uses these models to automatically generate diversified tasks, scenes, and training supervisions, thereby scaling up robotic skill learning with minimal human supervision. Our approach equips a robotic agent with a self-guided propose-generate-learn cycle: the agent first proposes interesting tasks and skills to develop, and then generates corresponding simulation environments by populating pertinent objects and assets with proper spatial configurations. Afterwards, the agent decomposes the proposed high-level task into sub-tasks, selects the optimal learning approach (reinforcement learning, motion planning, or trajectory optimization), generates required training supervision, and then learns policies to acquire the proposed skill. Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics. Our fully generative pipeline can be queried repeatedly, producing an endless stream of skill demonstrations associated with diverse tasks and environments

    Are All Vision Models Created Equal? A Study of the Open-Loop to Closed-Loop Causality Gap

    Full text link
    There is an ever-growing zoo of modern neural network models that can efficiently learn end-to-end control from visual observations. These advanced deep models, ranging from convolutional to patch-based networks, have been extensively tested on offline image classification and regression tasks. In this paper, we study these vision architectures with respect to the open-loop to closed-loop causality gap, i.e., offline training followed by an online closed-loop deployment. This causality gap typically emerges in robotics applications such as autonomous driving, where a network is trained to imitate the control commands of a human. In this setting, two situations arise: 1) Closed-loop testing in-distribution, where the test environment shares properties with those of offline training data. 2) Closed-loop testing under distribution shifts and out-of-distribution. Contrary to recently reported results, we show that under proper training guidelines, all vision models perform indistinguishably well on in-distribution deployment, resolving the causality gap. In situation 2, We observe that the causality gap disrupts performance regardless of the choice of the model architecture. Our results imply that the causality gap can be solved in situation one with our proposed training guideline with any modern network architecture, whereas achieving out-of-distribution generalization (situation two) requires further investigations, for instance, on data diversity rather than the model architecture

    Drive Anywhere: Generalizable End-to-end Autonomous Driving with Multi-modal Foundation Models

    Full text link
    As autonomous driving technology matures, end-to-end methodologies have emerged as a leading strategy, promising seamless integration from perception to control via deep learning. However, existing systems grapple with challenges such as unexpected open set environments and the complexity of black-box models. At the same time, the evolution of deep learning introduces larger, multimodal foundational models, offering multi-modal visual and textual understanding. In this paper, we harness these multimodal foundation models to enhance the robustness and adaptability of autonomous driving systems, enabling out-of-distribution, end-to-end, multimodal, and more explainable autonomy. Specifically, we present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text. To do so, we introduce a method to extract nuanced spatial (pixel/patch-aligned) features from transformers to enable the encapsulation of both spatial and semantic features. Our approach (i) demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations, and (ii) allows the incorporation of latent space simulation (via text) for improved training (data augmentation via text) and policy debugging. We encourage the reader to check our explainer video at https://www.youtube.com/watch?v=4n-DJf8vXxo&feature=youtu.be and to view the code and demos on our project webpage at https://drive-anywhere.github.io/.Comment: Project webpage: https://drive-anywhere.github.io Explainer video: https://www.youtube.com/watch?v=4n-DJf8vXxo&feature=youtu.b
    corecore